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Definition 1. Let G be a group. We say that G is abelian if gh = hg for all g, h ∈ G.

Problem 1. Let G be a group such that g2 = 1 for every g ∈ G. Show that G is abelian.

Solution. Let g, h ∈ G. Then g2 = 1, h2 = 1, and (gh)2 = 1. Since (gh)2 = ghgh, we have 1 = ghgh.
Multiplying on the left by g gives g = gghgh = g2hg = hgh. Multiplying on the right by h gives gh =
hghh = hgh2 = hg. Since g and h were selected arbitrarily from G, gh = hg for every g, h ∈ G, and G is
abelian.

Definition 2. Let G be a group and let g ∈ G. The order of G is |G|. The order of g is the smallest positive
integer k such that gk = 1.

Problem 2. Let G be a group of even order. Show that G has an element of order two.

Solution. Let A = {g ∈ G | g2 = 1}. Since 1 ∈ A, A is nonempty. If |A| is even, then A contains at least
one more element, which is necessarily an element of order two.

Let B = G r A. Clearly, |G| = |A| + |B|. Now b ∈ B if and only if b 6= b−1. Since inverses are unique,
B can be partitioned into sets of the form {b, b−1}. Each such set contains exactly two elements, so |B| is
even. Since |G| is even, |A| = |G| − |B| is also even. Thus A has an element of order two.

Definition 3. Let G be a group and let H ⊂ G. We say that H is a subgroup of G, and write H ≤ G, if

(S0) H is nonempty;

(S1) h1, h2 ∈ H ⇒ h1h2 ∈ H;

(S2) h ∈ H ⇒ h−1 ∈ H.

Problem 3. Let V = R3; this is a group under addition. Let T : V → R be given by T (x, y, z) = x + y + z.
Let W = {~v ∈ R3 | T (~v) = 0}. Show that W ≤ V .

Solution. To show that W ≤ G, we verify the three properties of being a subgroup.
(S0) Let ~0 = (0, 0, 0). Since T (~0) = 0 + 0 + 0 = 0, we have ~0 ∈ W .
(S1) Let ~v1, ~v2 ∈ W , where ~v1 = (x1, y1, z1) and ~v2 = (x2, y2, z2). Then

T (~v1 +~v2) = (x1 + x2) + (y1 + y2) + (z1 + z2) = (x1 + y1 + z1) + (x2 + y2 + z2) = T (~v1) + T (~v2) = 0 + 0 = 0.

Since T (~v1 + ~v2) = 0, we know that ~v1 + ~v2 ∈ W .
(S2) Let ~v ∈ W where ~v = (x, y, z). Then

T (−~v) = T (−x,−y,−z) = −x− y − z = −(x + y + z) = −T (~v) = −0 = 0.

Since T (−~v) = 0, we have −~v ∈ W .



Definition 4. Let G be a group. The center of G is

Z(G) = {g ∈ G | gh = hg for all h ∈ G}.

Problem 4. Let G be a group with a unique element g ∈ G of order two. Show that g ∈ Z(G).

Definition 5. Let G be a group and let H ≤ G.
The centralizer of H in G is

CG(H) = {g ∈ G | gh = hg for all h ∈ H}.

Problem 5. Let G be a group, g ∈ G, and H ≤ G. The centralizer of g in H is

CH(g) = {h ∈ H | h−1gh = g}.

Show that CH(g) ≤ G.

Solution. We verify properties (S0), (S1), and (S2).
(S0) Since 1 ∈ H and g · 1 · g−1 = gg−1 = 1, we have 1 ∈ CH(g).
(S1) Let h1, h2 ∈ CH(g). Then

g−1h1h2g = g−1h1(gg−1)h2g = (g−1h1g)(g−1h2g) = h1h1.

Thus h1h2 ∈ CH(g).
(S2) Let h ∈ CH(g). Then g−1hg = h, so (g−1hg)−1 = h−1. But (g−1hg)−1 = g−1h−1g, so g−1h−1g =

h−1, and h−1 ∈ CH(g).

Definition 6. Let G be a group and let g, h ∈ G. The conjugate of h by g is g−1hg.

Problem 6. Let G be a group and let g, h ∈ G.

(a) Show that g and h commute if and only if g−1hg = h.

(b) Show that (g−1hg)n = g−1hng (use induction).

(c) Show that if ord(h) = n, then ord(g−1hg) = n.

Solution.
(a) Clearly, hg = gh ⇔ g−1hg = g−1gh, so hg = gh ⇔ hg = gh.
(b) For n = 1, we have (g−1hg)1 = g−1hg = g−1h1g.
Let n > 1. By induction, g−1hg)n−1 = g−1hn−1g. Multiplying both sides by g−1hg) gives

g−1hg)n = g−1hn−1gg−1hg = g−1hn−1hg = g−1hng.

(c) Suppose ord(h) = n, and let k = ord(g−1hg). Since (g−1hg)n = g−1hng = g−1 · 1 · g = g−1g = 1, we
have n | k. Also, hk = g(g−1hkg)g−1 = g(g−1hg)kg−1 = g · 1 · g−1 = 1, so k | n. Since n and k are positive,
k = n.


